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ABSTRACT
The activation of aerosol particles to form cloud droplets, a necessary first step in cloud formation, controls much of the impact that aerosols
have on clouds and climate. Recently, there has been a surge of interest in extending the Köhler theory of cloud droplet activation to include
surface active (typically organic) as well as water-soluble (typically inorganic) aerosol components, but a systematic framework for doing
this has yet to be developed. Here, we apply a droplet stability analysis to this end. Ideal and Szyszkowski–Langmuir surfactant models
are analyzed to demonstrate the new approach, but the underlying theoretical framework is fundamental and model free. A key finding
is that superficial densities at the cloud activation threshold (Köhler maximum) are significantly sub-monolayer, with fractional coverage
ranging from 69% to 85% for the organic compounds and mixtures studied. The result, significant for model inventories of cloud con-
densation nuclei, is a weakening of the surfactant effect relative to expectations based on bulk sample measurements. Analytical results are
obtained for the loci of Köhler maxima and applied to aerosol mixtures containing an arbitrary number of water-soluble and surfactant
components.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031436., s

I. INTRODUCTION

By providing a thermodynamic basis for determining the
threshold level of water vapor saturation under which an aerosol
particle activates to form a cloud drop, the Köhler theory (Köhler,
1936; Pandis and Seinfeld, 1998; and Pruppacher and Klett, 2010)
has become an essential tool for assessing aerosol impacts on clouds
and climate. Droplet growth kinetics and meteorological conditions
aside, lower saturation thresholds result in more particles able to
activate and higher cloud drop number concentrations. The lat-
ter, in turn, affects cloud properties both through enhanced cloud
brightening (Twomey, 1977) and warm cloud drizzle suppression
(Albrecht, 1989; McGraw and Liu, 2003; McGraw and Liu, 2004).
Recently, it has been suggested that the staged activation of ultra-
fine aerosol particles having diameters between 15 nm and 50 nm

can intensify the cores of the tropical deep-cloud convective systems
that produce copious precipitation and drive global-scale circulation
(Rosenfeld et al., 2008; Fan et al., 2018).

Atmospheric aerosols come in a variety of particle sizes and
compositions that influence their ability to serve as cloud conden-
sation nuclei (CCN). Early applications of Köhler theory treated
mainly water-soluble species that lower the vapor pressure of aque-
ous solution droplets through the Raoult effect. More recently,
there has been a surge in the number of theoretical and modeling
studies focusing on the role of surfactants on CCN enhancement
(e.g., Ovadnevaite et al., 2017), or lack thereof (e.g., Raatikainen
and Laaksonen, 2011), as well as laboratory measurements (e.g.,
Bilde and Svenningsson, 2004; Ruehl et al., 2012; and Bzdek et al.,
2020). Despite considerable progress [see Lin et al. (2018) for a
recent review], a systematic approach to bring surfactants into the
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original Köhler framework remains to be developed. The present
study is directed toward this goal.

The present study builds on the early analysis (Gibbs, 1878)
of the stability properties of a spherical phase (here a nascent
cloud droplet) embedded in an unspecified parent phase (here a
surrounding atmosphere containing various levels of supersatu-
rated water vapor) of indefinite extent. The nascent cloud droplet
contains one or more nonvolatile solute species, each capable of
varying degrees of size- and composition-dependent partitioning
between the solution and the surface phase. It is shown here
that the droplet stability analysis, when adapted to the Köhler
problem beginning in Sec. III, provides a unified treatment of
nascent cloud droplets containing mixtures of both water-soluble
and surfactant species in equilibrium with water vapor at a Köh-
ler maximum. The theory behind the new method is developed
in Secs. IV–VI and applied to nascent cloud droplets in the sec-
tions that follow. Connections to nucleation theory are explored in
Sec. VII. Section VIII presents a discussion and summary of the key
results.

II. LOCI OF KÖHLER MAXIMA—SOLUBLE
PARTICLE CASE

The activation thresholds for soluble aerosol particles to form
cloud droplets under the levels of water vapor supersaturation
encountered in the atmosphere, typically less than one or at most
a few percent, is generally well described by Köhler theory (Köhler,
1936; Pruppacher and Klett, 2010). For (mostly) soluble components
present in the condensation nucleus, the defining Köhler equation
takes the form (Pandis and Seinfeld, 1998; Sorjamaa et al., 2004)

ln S = A0

r
− B
r3 , (2.1)

where S = Pw/Peq
w is the water vapor saturation ratio at vapor pres-

sure Pw. S equals unity when Pw equals Peq
w , the equilibrium vapor

pressure over the bulk liquid water reference state. The first term
on the right-hand side is the contribution from the Kelvin equation,
which gives the vapor pressure over a spherical drop of radius r in
the absence of solute,

ln SK(r) =
A0

r
, (2.2)

where

A0 =
2γ0v1

kT
(2.3)

is the Kelvin radius. γ0 and v1 are surface tension and molecular
volume of water, k is Boltzmann’s constant, and T is temperature.
The second term in Eq. (2.1) represents the contribution from the
dissolved solute. The Köhler critical volume (droplet volume at max-
imum supersaturation) is typically hundreds of times larger than
the dry particle volume, justifying the dilute solution approximation
that gives this term its r−3 dependence,

ln Sb(r) = −
B
r3 ≈ −x2. (2.4)

x2 is the molecular (or molar) ratio of dissolved solute
(component 2) to liquid water (component 1) present in the drop,
nb2/n1. In the absence of partitioning to the surface, nb2 equals the
total number of solute molecules n2. Sb is the equilibrium vapor satu-
ration ratio over a bulk solution having the composition of the drop.
With this result, Eq. (2.1) becomes

ln S = A0

r
− x2, (2.5)

also known as the Gibbs–Kelvin–Köhler (GKK) equation (Shchekin
and Rusanov, 2008).

Two universal curves for soluble inorganics: Several geometric
relations are exhibited in Fig. 1. First, it is evident from Eq. (2.1)
that ln S assumes its maximum value, ln Sc, at a critical radius rc
given by

r2
c = 3B/A0 (2.6)

for A0 and B independent of radius.
There is a ready separation of the parameters A0 and B at the

critical size. Isolating A0 gives

ln Sc(rc) =
A0

rc
− B
r3
c
= A0

rc
− (BA0/(3B))

rc
= 2

3
A0

rc
. (2.7)

The last equality shows that the locus of Köhler critical points follows
a universal curve, for the dissolved solute effect, at 2/3 height of the
Kelvin curve, independent of dry seed particle composition and size.
This is the upper dashed curve in Fig. 1 separating the stable (left)
and unstable (right) branches of the Köhler curve. The Kelvin curve
is itself the locus of critical nuclei in homogeneous nucleation theory
(Reiss and Koper, 1995).

A second universal curve, this for the locus of critical drop
composition, x2c, is obtained for the bulk solute contribution,

FIG. 1. Properties of the Köhler equation: solid curves top to bottom: Kelvin, full
Köhler, and bulk solute terms of Eq. (2.1) for a NaCl dry seed radius of 20 nm. The
bulk solute term was obtained from a fit of Eq. (2.4) to water activities calculated
from the Pitzer model (Pitzer, 1973) (black dots). Vertical lines positioned at the
Köhler maximum indicate various displacements described in the text [Eq. (2.8)].
Upper and lower dashed curves define the locus of Köhler maxima and the satura-
tion ratio over bulk solution having the composition of the critical drop as functions
of the critical droplet radius rc.
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ln Sb(rc) = −
B
r3
c
= −x2c = −

1
3
A0

rc
= −1

3
ln SK(rc) = −

1
2

ln Sc(rc).

(2.8)

The third equality uses Eq. (2.6) to eliminate B. Equation (2.8) gener-
ates the lower dashed curve of Fig. 1. It is interesting that knowledge
of the water activity alone, aW ≈ Sb, is sufficient to determine the crit-
ical radius, solute activity, and Köhler maximum. A related situation
is found in observations that the freezing and nucleation thresholds
for ice formation, also from dilute aqueous solutions, are largely
controlled by water activity (Koop et al., 2000). Both cases derive
from dilute solution thermodynamics and reflect the dominating
importance of water activity in this regime.

Connections to the κ–Köhler model: Petters and Kreidenweis
(2007) defined a hygroscopicity parameter κ through its effect on
water activity,

1
aw
= 1 + κ

Vs

Vw
. (2.9)

V s and Vw are the volumes of dry particle seed and water in the
droplet. For the dilute solutions under consideration, one has to
good approximation

ln aw = − ln(1 + κ
Vs

Vw
) ≈ −κ Vs

Vw
≈ −κ

r3
dry

r3 = −x2 = ln Sb. (2.10)

Comparing with the first equality of Eq. (2.8) gives

B ≈ κr3
dry, (2.11)

where rdry is the volume-equivalent dry particle radius. Using B from
the fit to the Pitzer model (c.f. Fig. 1) yields a kappa value for NaCl,
κ2, of 1.25, in good agreement with the reported mean CCN-derived
value of 1.28 (Petters and Kreidenweis, 2007). The approximate
equality in Eq. (2.11) refers to the dilute solution limit, in which case
combining Eqs. (2.6) and (2.11) gives

r2
c =

3B
A0
= 3κ
A0

r3
dry =

3kTκ
2v1γ0

r3
dry (2.12)

and the proportionality r2
c ∝ r3

dry (Petters and Kreidenweis, 2007;
Lewis, 2008). The next-to-last equality in Eq. (2.10) makes use
of Eq. (2.11) to expand the definition of x2 from the molecu-
lar ratio, nb2/n1, to x2 = κr3

dry/r3, which reduces to the molecu-
lar ratio for a dilute, non-dissociating solute, κ = κideal = v1/v2,
where v2 is the molecular volume of the solute in the dry par-
ticle. The expanded definition brings in solute non-ideality and
other useful properties of κ, not the least of which is its tabula-
tion for many atmospheric compounds of relevance to cloud droplet
activation.

III. EQUIVALENCE BETWEEN THE KÖHLER
AND GIBBS DROPLET STABILITY CONDITIONS

In Sec. II, it was mentioned that the locus of Köhler max-
ima separates each Köhler curve into stable and unstable branches

according to the sign of d ln S/dr. By stable (unstable), we refer to
the tendency for a small droplet, located initially along the Köhler
curve, to return to (depart from) its original state after a small dis-
turbance. The condition for stability, henceforth the Köhler stability
condition (KSC), is

d ln S/dr > 0 (3.1)

with the direction of inequality reversed for instability and equality
(d ln S/dr = 0) at the Köhler maximum. Inequality (3.1) is satis-
fied for droplets smaller (more concentrated) than those of critical
size and reversed for larger (less concentrated) ones, corresponding
to the stable and unstable branches of the Köhler curve (Reiss and
Koper, 1995).

Gibbs, in his treatment of the stability of a spherical phase
embedded in an unspecified background phase of indefinite extent,
started with a mechanical condition for stability based on the pres-
sure difference, ΔP = 2γ/r, across the interfacial boundary (Gibbs,
1878),

(r dΔP
dr
− 2

dγ
dr
) = (r dΔP

dμ2
− 2

dγ
dμ2
)dμ2

dr
< −ΔP. (3.2)

The introduction of chemical potential in the middle expression is
a pivotal step that begins transformation of the mechanical stability
problem into a molecular one. Further reductions using the Gibbs
adsorption equation

dγ
dμ2
= − ns2

4πr2 = −Γ2, (3.3)

where Γ2 is the superficial density, and its analog for the change in
pressure,

dΔP
dμ2
= nb2

V
≈ nb2
n1v1

= x2

v1
, (3.4)

where V is the droplet volume, complete the transformation

(r x2

v1
+ 2Γ2)

dμ2

dr
< −ΔP, (3.5)

henceforth the Gibbs stability condition (GSC). The approximate
equality in Eq. (3.4) reflects the dilute solution approximation.

Application of the Gibbs analysis to the Köhler problem
requires first demonstrating that the two conditions (KSC and GSC)
are equivalent. This can be done by transforming inequalities (3.1)
and (3.5) into one another as follows: On differentiation of the
Gibbs–Kelvin–Köhler equation [Eq. (2.5)] and rearranging terms,
the KSC becomes

rkT
d
dr
(x2/v1) − 2

dγ
dr
< −ΔP. (3.6)

Next, the chemical potential is introduced as in (3.2),
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(rkT d
dμ2
(x2/v1) − 2

dγ
dμ2
)dμ2

dr
= (r x2

v1
+ 2Γ2)

dμ2

dr
< −ΔP, (3.7)

where the equality, showing final reduction to the GSC, follows
(3.3) and μ2 = kT ln x2. The two stability conditions are indeed
equivalent.

Conditions at the Köhler maximum may be obtained analyti-
cally by equating two independent expressions for dμ2/dr: The first,
valid only at the Köhler maximum, is obtained by simply solving
(3.7) in the equality limit,

dμ2

dr
= −ΔP/(r x2

v1
+ 2Γ2) = −2γ/(r2 x2

v1
+ 2rΓ2). (3.8)

The second, valid at any droplet radius, is obtained from the conser-
vation condition, nb2 + ns2 = n2. In the expanded form,

4πr3

3
(x2

v1
) + 4πr2Γ2 = n2.

Differentiation holding n2 constant gives

(r2 x2

v1
+ 2rΓ2)dr +

1
3
r3d(x2

v1
) + r2dΓ2 = 0,

which, as x2 and Γ2 are functions of μ2, becomes

(r x2

v1
+ 2Γ2)dr + ( r

2

3
d(x2/v1)

dμ2
+ r

dΓ2

dμ2
)dμ2 = 0,

yielding for the second expression

dμ2

dr
= −

(r x2
v1

+ 2Γ2)
r2

3
d(x2/v1)

dμ2
+ r dΓ2

dμ2

. (3.9)

Substituting into (3.5) gives the general stability condition for a
single component solute partitioned between the surface and the
volume of the droplet,

(r x2
v1

+ 2Γ2)2

r2

3
d(x2/v1)

dμ2
+ r dΓ2

dμ2

> ΔP. (3.10)

Equations (3.9) and (3.10) (equality case) are general expressions
that may be adapted to any physically consistent model of the solu-
tion and surface phases. The bulk solution and surfactant limiting
cases of (3.10) are especially simple and insightful to the analysis of
the Köhler problem.

In the surfactant limit, x2 → 0, (3.10) reduces to the condition

(2Γ2)2

r dΓ2
dμ2

= −
4Γ2

dγ
dμ2

r dΓ2
dμ2

= −4Γ2

r
dγ
dΓ2
> ΔP = 2γ

r
, (3.11)

where in the first equality, the adsorption equation (3.3) has been
used to eliminate one of the Γ2’s. Rearranging the inequality gives
the following elegantly simple condition for stability:

Γ2

γ
dγ
dΓ2
< −1

2
. (3.12)

The left-hand side equals −1/2 at the Köhler maximum and exceeds
−1/2 in the unstable regime. (3.12) is a general result that is applied
in Sec. IV to the Köhler problem using two different surfactant
models.

Similar reduction of the general stability formula for the bulk
limit, Γ2 → 0, gives the complementary result for this case. By
inspection, (3.10) reduces to

(r x2
v1
)2

r2

3
d(x2/v1)

dμ2

=
(x2/v1)( dΔPdμ2

)
1
3
d(x2/v1)

dμ2

> ΔP, (3.13)

where now (3.4) has been used to eliminate one of the concentration
factors in the numerator. Finally, on dividing through by ΔP and
rearranging terms,

x2/v1

ΔP
dΔP

d(x2/v1)
> 1

3
. (3.14)

Gibbs extended the GSC to multiple solute species (in the case
of present interest component 1 being water),

(r x2

v1
+ 2Γ2)

dμ2

dr
+ (r x3

v1
+ 2Γ3)

dμ3

dr
+⋯ < −ΔP. (3.15)

Each derivative is evaluated using its own molecular conserva-
tion condition with the chemical potentials of the other solutes
present held constant. (3.15) is applied in Sec. VI to obtain the
loci of Köhler maxima for mixtures of two or more solutes in
terms of their relative abundances in the dry aerosol particle
seed.

IV. ANALYSIS OF DROP STABILITY
WITH APPLICATION TO THE KÖHLER PROBLEM

The Gibbs analysis, as modified for the Köhler problem in
Sec. III, is used here to develop a systematic formulation of the
Köhler theory that treats contributions from the bulk solution and
surface layer in a more or less symmetric fashion while yielding
analytic, largely model independent, expressions for critical droplet
properties. To this end, we apply stability analysis, initially to the
solution phase (Sec. IV A), so as to recover the results of Sec. II
from a broader perspective that is applicable as well to the surface
(Sec. IV B).

A. Bulk limit
The bulk limit stability condition (3.14), taken in the equality

limit, is satisfied at the neutral equilibrium condition correspond-
ing to the maximum of the Köhler curve. Of interest here is the
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saturation ratio, which peaks at the Köhler maximum. ΔP is the
Laplace pressure inside the droplet relative to that of the surround-
ing vapor. The two quantities are related [c.f. Eqs. (2.3) and (2.5)]
through the identity

kT(ln S + x2) = v1ΔP, (4.1)

where in general ΔP = 2γ/r, with surface tension γ = γ0 in the
bulk limit. Equation (4.1) brings in the saturation ratio and a more
convenient expression of (3.14) for addressing the Köhler problem,

x2

ln S + x2

d(ln S + x2)
dx2

> 1
3

.

At the Köhler maximum ln S = ln Sc, d ln S = 0, and the derivative is
unity. At equality,

x2c

ln Sc + x2c
= 1

3
,

where the subscript “c” refers to conditions at the Köhler maximum.
This yields the immediate result that ln Sc = 2x2c. From the equality
ln Sc + x2c = ln SK at any critical radius—the Kelvin (pure water) and
solution droplets being under the same Laplace pressure at the same
radius and same surface tension γ0—one obtains the explicit solu-
tions, x2c = ln SK/3 and ln Sc = 2 ln SK/3, thereby recovering the two
universal curves of Sec. II.

B. Surfactant limit
The complementary inequality for stability in the surfactant

limit, i.e., no appreciable solute effect, is given by (3.12),

kTΓ2

γ
dγ

dkTΓ2
< −1

2
, (4.2)

where each of the factors on the left-hand side of (3.12) has been
made dimensionless by multiplying and dividing by kT. γ(r) is the
surface tension of the droplet, generally different from γ0 and radius
dependent, and Γ(r) is the superficial density,

Γ2(r) = ns2/(4πr2). (4.3)

ns2 refers to the number of solute molecules present at the surface of
the drop. In the strong surfactant limit, ns2 = n2.

Inequality (4.2) is valid for any physically consistent surfac-
tant model, with the proviso that the droplet be large relative to the
thickness of its interface. Only then, as Gibbs himself noted, will
the mathematical “dividing surface” he invented sensibly coincide
with the physical surface of discontinuity, making droplet radius,
surface tension, and other quantities dependent on dividing sur-
face placement for small clusters, physically well defined for larger
droplets. The coincidence of dividing surfaces further implies that
effects due to the intrinsic curvature on droplet surface tension can
be neglected (Buff, 1952; Laaksonen et al., 1999). Similar arguments
show that surface excess quantities and physical surface concentra-
tions are equivalent under such conditions (Bermúdez-Salguero and
Gracia-Fadrique, 2015; Toribio et al., 2018). This restriction is of no

consequence for the critical-size droplets of Köhler theory where the
interfacial thickness to droplet radius ratios is typically of order one
percent.

To accommodate surfactants, the Köhler theory is extended
to allow the lowering of surface tension from that of pure water.
Allowing for radius dependence, Eq. (2.5) becomes

ln S = A0

r
− 2[γ0 − γ(r)]v1

rkT
− x2. (4.4)

For γ = γ0, the middle term vanishes and results from Sec. II are
obtained.

Szyszkowski–Langmuir (SL) surfactant model: The Szyszkowski
equation for surface tension has the form (Meissner and Michaels,
1949)

γ0 − γ = kTΓmln(1 + Kx2), (4.5)

where x2 is equated to the solute activity, with chemical potential
μ2 = kTlnx2 in the dilute solution approximation. Differentiating
with respect to lnx2 gives

d(γ0 − γ)
d ln x2

= − dγ
d ln x2

= kTΓm
Kx2

1 + Kx2
= kTΓ2 (4.6)

and the Langmuir adsorption isotherm (Adamson and Gast, 2012)

Γ2/Γm =
Kx2

1 + Kx2
. (4.7)

The equality between the second and last terms of Eq. (4.6) follows
the Gibbs adsorption equation [Eq. (3.3)]. The surface layer saturates
at a superficial density Γm, interpreted as full monolayer coverage.
K determines the extent of solute partitioning between surface and
bulk. Combining the Szyszkowski and Langmuir forms, Eqs. (4.5)
and (4.7), respectively, yields surface tension reduction in terms of
superficial density,

γ0 − γ = kTΓm ln
⎛
⎝

1
1 − Γ2

Γm

⎞
⎠

, (4.8)

and the dimensionless derivative,

dγ
dkTΓ2

= − 1

(1 − Γ2
Γm
)

. (4.9)

Equations (4.8) and (4.9) contain all of the ingredients needed for
the evaluation of droplet stability. Substitution into (4.2), equality
case, gives

− 1

(1 − Γ2c
Γm
)
× kTΓ2c

γ0 − kTΓm ln( 1
1− Γ2c

Γm

)
= −(γint − γc

kTΓ2c
)(kTΓ2c

γc
)

= −(γint − γc
γc

) = −1
2

, (4.10)
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where γint is the tangent intercept in the graphical construction
introduced in Fig. 2. Equation (4.10) is readily solved for the criti-
cal superficial density and surface tension, Γ2c and γc, respectively,
given Γm and γ0.

The first equality of Eq. (4.10) has a simple interpretation in
terms of Fig. 2, which shows surface tension plotted as a function
of superficial density from Eq. (4.8). The curve is independent of
the partition coefficient K, which can easily vary orders of mag-
nitude. From another perspective, all such curves having the same
monolayer coverage but different partition coefficients project onto
this one curve. Meissner and Michaels, in their study of the sur-
face tensions of dilute aqueous solutions, grouped together some
25 aliphatic organic compounds covering a wide range of K, func-
tional groups, and solubility, assigning the same monolayer cover-
age, kTΓm = 12.99, to each member of the group. The compounds
included a number with alkyl chains that, depending on their orien-
tation at the surface, might well exhibit similar monolayer densities.
Using this monolayer value, and γ0 = 72.8, the unique solution to
Eq. (4.10) gives Γ2c/Γm = 0.689, kTΓ2c = 8.955, and surface tension
at the Köhler maximum, γc = 57.6 erg/cm2.

With reference to the tangent construction of Fig. 2 and the
last equality of 4.10, we have γc = 2γint/3 in the surfactant limit.
As the coordinates, γc and Γc, are thereby fixed for a given solute
at the Köhler maximum, their independence on seed particle size is
implied. The constancy of γc, in turn, implies that the locus of Köhler
maxima is again a constant fraction, in this case γc/γ0, of the Kelvin
curve,

ln Sc =
2v1γc
kTrc

= γc
γ0
A0/rc =

2
3
γint

γ0
A0/rc. (4.11)

Identification of the Köhler maximum is complete upon determi-
nation of rc. From (4.2), expressed as an equality, and (4.3) for the
superficial density, we obtain

r2
c =

kTn2

4π kTΓc
= 2
⎛
⎝

1
1 − Γc

Γm

⎞
⎠
kTn2

4πγc
. (4.12)

The constancy of Γc and γc in (4.12) implies the same propor-
tionality, r2

c ∝ n2 ∝ r3
dry, as was previously found in the bulk limit

[Eq. (2.12)]. The quantity in parentheses is the magnitude of the tan-
gent slope, evaluated at the Köhler maximum. Together, Eqs. (4.11)
and (4.12) give an analytic determination of the saturation ratio
at the activation threshold for any given set of SL parameters, K
and Γm.

FIG. 2. Combined Szyszkowski–Langmuir plot showing droplet surface tension as
a function of superficial density from Eq. (4.8). Black and red regions correspond
to the stable and unstable branches of the surfactant Köhler curve, respectively.
The red marker indicates the maximum superficial density and minimum surface
tension, achievable at the critical droplet size for the indicated monolayer limit,
Γm. The equality limit of 4.2 is satisfied at this point in the strong surfactant limit.
Analytic expressions for γc and kTΓ2c are available from Eq. (4.10). Because Γm is
the same for each, this figure applies to all of the compounds within the Meissner
and Michaels group.

Interestingly, a fundamental lower limit on surface tension at
the Köhler maximum is implied by (4.2) as used in Eq. (4.10). Recall-
ing the condition γint − γc = γc/2, where γint is the tangent intercept
and γc is surface tension at the Köhler maximum, it follows that
γc ≥ 2γ0/3; otherwise, γint < γ0, which is impossible due to the
convexity of Eq. (4.8) on which the tangent construction of Fig. 2
is based. Higher superficial densities (lower surface tensions) are

FIG. 3. (a) Effect of varying kTΓm (which
enters the curve parametrically) on criti-
cal superficial density kTΓc and surface
tension γc at the Köhler maximum. (b)
kTΓm vs kTΓc .
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possible for sub-critical droplets along the stable branch of the Köh-
ler curve, lower portion of the curve in Fig. 2, but these are below the
activation threshold.

Measurements on a wider set of surfactants that include a num-
ber of organic compounds typically found in atmospheric aerosols
(see, for example, Fig. 1 of Petters and Petters, 2016) are indicative
of significant differences in monolayer superficial density, Γm. Fig-
ure 3(a) shows surface tension as a function of superficial density
at the Köhler maximum. Both quantities depend parametrically on
kTΓm, which varies as shown in Fig. 3(b). Dotted crosshairs mark
the conditions used in Fig. 2.

Dashed crosshairs are from a fit of the Szyszkowski equation
to surface tension measurements on bulk samples of fogwater by
Facchini et al., 1999; Facchini et al., 2000, with the corresponding
Szyszkowski and combined Szyszkowski–Langmuir curves shown
in Fig. 4. In this case, γc and kTΓc take the unique values
γc = 62.4erg/cm2 and kTΓc = 4.66 at the Köhler maximum. This
can be compared with the monolayer value, kTΓm = 5.48, for a criti-
cal monolayer coverage fraction for this case of 85% vs 69% found
for the compounds of Meissner and Michaels. The dashed curve
on the right-hand side of Fig. 4 shows the range of surface ten-
sions measured on bulk fogwater samples—from nearly pure water
72.8 erg/cm2 to about 50 erg/cm2, a reduction of about 30%. From
γc and kTΓc, the saturation ratio and droplet radius at the Köhler
maximum are obtained [Sc from Eq. (4.11) and rc from Eq. (4.12)].
The proportionality ln Sc ∝ A3/2B−1/2 ∝ γc3/2 implies a reduc-
tion in ln Sc that is less than half the expected value based on the
lower range of the bulk measurements. The limited reductions in
surface tension achievable at the Köhler maximum are expected
to have significant implications for CCN inventories used in
models.

Ideal surfactant model: For very dilute solutions that are also
ideal (at least for non-electrolytes), the variation of surface tension
with solute concentration is linear in superficial density (Adamson
and Gast, 2012),

γ0 − γ = kTΓ2, (4.13)

which is a linearization of the Szyszkowski–Langmuir model
[Eq. (4.8)]. The Langmuir adsorption isotherm [Eq. (4.7)] is also
linearized,

Γ2 = ΓmKx2, (4.14)

FIG. 4. Combined Szyszkowski–Langmuir (left) and Szyszkowski (right) plots. The
right plot is from the empirical fit of bulk surface tension measurements on fogwater
samples by Facchini et al. (1999). The dashed curve (shifted for clarity) shows the
range of surface tensions reported from the bulk samples. The markers show the
only conditions possible at the Köhler maximum.

FIG. 5. Comparing the Szyszkowski–Langmuir (solid curve, same as in Fig. 2) and
ideal (dashed line) surfactant models. Horizontal line: γc = 2γ0/3. Markers show
conditions at the Köhler maximum for the two models. Regions above (below) the
markers correspond to unstable (stable) branches of the corresponding Köhler
curves. For an ideal surfactant, γ0 = γint.

and the pair together satisfy the Gibbs adsorption equation. Sub-
stitution into (4.2) at equality gives the conditions at the Köhler
maximum γc = 2γ0/3 and kTΓc = γ0/3, implying that the ideal
surfactant and bulk limits share the same locus of Köhler maxima.
Figure 5 presents a comparison of the models. The line, γ vs kTΓ2, is
self-tangent in the ideal model with a slope of −1.

V. THE GENERAL CASE OF A PARTITIONED SOLUTE
Inequality (3.10) applies to the general partitioning of a sin-

gle solute between the surface and the volume of the droplet,
with (3.12) and (3.14) obtained as limiting cases considered in
Secs. IV B and IV A, respectively. The extra complexity in (3.10)
accounts for changes in partition fraction with droplet size in the
general case.

Next, we consider two compounds, n-butanol and octanoic
acid (OA), from the group of 25 studied by Meissner and Michaels
and thus well approximated as having the same superficial density at
monolayer coverage (i.e., Fig. 2 applies to both). The partition coef-
ficients, on the other hand, differ significantly with OA showing a
much stronger preference for the surface phase.

Method of calculation: The following sequence of steps was
employed in the calculations used to produce Figs. 6–9 for gen-
eral partitioning: Given a value for x2 in the range of interest,
obtain γ from Eq. (4.5) and Γ from Eq. (4.7). The droplet radius
is obtained from species conservation, nb2 + ns2 = n2, which can be
expressed in the form of a cubic equation, ar3 + br2 = n2, with a
= 4πx2/3v1 and b = 4πΓ2. The radius is given as the positive real
root of the cubic for specified n2 or rdry. The bulk and surface occu-
pation numbers then follow as nb2 = ar3 and ns2 = br2, where r is
the root. This suffices for the generation of Figs. 6 and 8. Satura-
tion ratios needed to generate the Köhler curves shown in Figs. 7
and 9 were obtained from the pressure equation [Eq. (4.1)] with
ΔP = 2γ/r.

n-Butanol: Figure 6 shows an example of partitioning for Kbut
= 1.27 × 103, representative of members of the “class 4” compounds

J. Chem. Phys. 154, 024707 (2021); doi: 10.1063/5.0031436 154, 024707-7

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Solute partitioning for n-butanol showing the fraction of n2 in bulk (nb2/n2),
solid curves and at the surface (ns2/n2) dashed curves. Vertical lines indicate bulk
compositions at the critical droplet sizes. Note that the larger value of rdry gives rise
to larger critical droplets relatively enriched in bulk and depleted at the surface.

of the Meissner–Michaels grouping that includes n- and isobutyric
acid and n- and isobutyl alcohol. The red and blue curves shown in
the figure were obtained for two values of rdry (20 nm and 30 nm)
and v2 = 1.5 × 10−22 cm3 characteristic of butanol in the dry particle.
Vertical lines indicate the bulk compositions of the droplets at their
respective critical sizes.

Figure 7 shows the locus of Köhler maxima (red curve) for
the same butanol partitioning case shown in Fig. 6. Hyperbolic
curves are as follows: Kelvin curve for γ = γint , the intercept
value of surface tension in Fig. 2 (dotted); Kelvin curve for water,
γ = γ0 (upper solid curve); locus of Köhler maxima in the surfac-
tant limit (upper dashed curve at 2/3 height of the dotted curve);
and locus of Köhler maxima in the bulk limit (lower dashed curve at
2/3 height of the water curve). The partitioned result (red curve) is
bounded by the surfactant and bulk limiting dashed curves. Note
a clear preference to follow the surfactant (bulk) limiting curve
for small (large) values of droplet critical radius. For the special
case that γint = γ0, as with the ideal surfactant model, the limit-
ing dashed curves coincide, implying that the Köhler maxima for
the bulk and surfactant limiting cases share the same locus in that
model.

FIG. 7. Locus of Köhler maxima (red) and individual Köhler curves for butanol
at equivalent dry radii (top to bottom) of 20 nm, 30 nm, and 40 nm. The three
Köhler maxima lie along the red curve. See text for the description of the hyperbolic
curves.

FIG. 8. Solute partitioning for octanoic acid. Solid and dashed curves show parti-
tioned fraction to bulk, nb2/n2, and surface, ns2/n2, respectively. Vertical lines mark
solute concentration at the critical drop size (solid), surface partition fraction close
to unity, and at the saturation limit (dotted).

Octanoic acid: Figure 8 shows the partitioning of OA in the SL
model. This compound, with partition coefficient Koct = 2.94 × 105

(Meissner and Michaels, 1949), has properties close to the surfactant
limit at the Köhler maximum. The saturation limit for OA in water,
not taken into account in the calculations, is indicated for reference
in the figure. The solution is seen to be under-saturated at the Köhler
maximum (solid line).

Figure 9 shows Köhler curves for OA together with the locus
of surfactant-limit critical points from Eq. (4.11), for comparison,
and the Kelvin curve from Eq. (2.2) (dashed and solid hyperbolic
curves, respectively). Solid Köhler curves were obtained allowing for
general partitioning, as described above. The corresponding dot-
ted curves assume the surfactant limit independent of droplet size.
These two distinct models agree at the Köhler maxima, and at larger
sizes, but show departure at smaller radii where the bulk solutions
are more concentrated and quickly approach saturation. The surfac-
tant effect is stronger than the bulk effect in this sub-critical (stable
droplet) regime, as evidenced by the solid curves, which include
partitioning, showing less reduction in saturation ratio compared
with the dotted curves obtained under the assumption that all of
the solute is at the surface. The effect is especially evident for the

FIG. 9. Köhler curves for OA: rdry = 20nm (upper) and 40 nm (lower) solid curves.
Dashed hyperbolic curve: locus of Köhler maxima in the surfactant limit. Solid
hyperbolic curve: Kelvin curve for water. See text for explanation of the dotted
Köhler curves.
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40 nm seed. Nevertheless, for OA, the region around the Köh-
ler maximum is well described by assuming the strong surfactant
limit. In this context, it is worth mentioning that the critical solute
concentration, indicated by the vertical solid line in Fig. 8, is vis-
ibly unchanged on doubling rdry to 40 nm. This is to be expected
from the Langmuir adsorption equation as follows: to the extent
that Γc is constant, xc will be too. However, Γc is constant at the
Köhler maximum in the surfactant limit and very nearly constant
for OA.

There are several approaches to determining the loci of Köhler
maxima. One approach, described in Sec. III, involves equating two
expressions for dμ2/dr: Eq. (3.8), which is valid only at the Köhler
maximum, and Eq. (3.9), which is valid at any radius. Solving the
resulting equality yields the Köhler maximum. A second approach,
dependent only on the total number of molecules of solute present,
n2, irrespective of partitioning, is described in Sec. VII.

VI. MIXTURES
Inequality (3.15) applies to any number of components whether

they favor the bulk, surface, or partition between the two. The
equality condition

(r x2

v1
+ 2Γ2)

dμ2

dr
+ (r x3

v1
+ 2Γ3)

dμ3

dr
+⋯ = −ΔP (6.1)

is satisfied at a Köhler extremum for the mixture: The relative
amounts of solute species 2, 3, . . . reflect the composition of the
dry particle seed. In the most general case, these species interact
and each derivative would be taken with the chemical potentials
of the others held constant, a procedure requiring knowledge of
the multicomponent phase diagram. To illustrate (6.1), the prob-
lem is simplified first by assuming species independence. In the
κ-Köhler formulation, this assumption is in place for the solu-
tion phase through the Zdanovskii, Stokes, and Robinson (ZSR)
approximation, in which the different amounts of water assigned
to each soluble species are assumed additive (Stokes and Robin-
son, 1966; Petters and Kreidenweis, 2007). At this stage, the prob-
lem is solvable using (3.9) for the derivative of the chemical poten-
tial of each species with respect to radius in (6.1). A further
simplification is to assume strong preference (not uncommon) for
each species to partition either to the interior solution or to the
droplet surface, at least at those concentrations close to the Köhler
maximum, c.f. Fig. 8 for octanoic acid. The result is a straightfor-
ward extension of Sec. II to mixtures of water-soluble species and
surfactants.

The species independence and strong preference assumptions
together reduce the chemical potential derivatives from their fully
partitioned form (3.9) to the simpler expressions

dμi
dr
= −3kT

r
(6.2)

for species i, present in solution, and

dμj
dr
= 2kT

r
( ∂γ(r)
∂kTΓj

) (6.3)

for species j, present at the surface. As with (3.9), Eqs. (6.2) and (6.3)
apply at any radius, not just at a Köhler maximum.

Multiplying inequality (6.1) by −v1/kT, inserting Eqs. (6.2) and
(6.3), and canceling terms gives at the stability limit

ln Sc = 2∑
i
xi −

2v1

kTrc
∑
j

2kTΓj(rc)(
∂γ

∂kTΓj
)
r=rc

= 2(BI + BJ)
r3
c

,

(6.4)

where the saturation ratio has entered throughΔP by way of Eq. (4.1)
and

BI/r3
c = ∑

i
Bi/r3

c = ∑
i
xi,

BJ/r3
c = ∑

j
Bj/r3

c = −
2v1

kTrc
∑
j
kTΓj(rc)(

∂γ
∂kTΓj

)
r=rc

. (6.5)

The presence of additional species in the mixture, whether surface
active or not, increases critical droplet size, resulting in concomi-
tant lowering of the critical superficial density. Indeed, the critical
coordinates {Γj(rc), γc} can now lie anywhere along the unstable
portion of the Szyszkowski–Langmuir curve (e.g., the red section
of the curve in Fig. 2) as the region of stability changes depending
on seed particle composition while remaining independent of seed
size.

Equations (6.4) may be compared with the GKK form
[Eq. (2.5)] extended to a mixture,

ln S(r) = −∑
i
xi +

v1

kT
ΔP = −∑

i
xi +

2v1γ
kTr

. (6.6)

Whereas Eq. (6.4), derived from inequality (6.1), applies only
at a Köhler extremum, Eq. (6.6) applies at any droplet radius,
becoming

ln Sc =
Ac

rc
− BI

r3
c

(6.7)

at the Köhler maximum. Equating these two independent expres-
sions at the Köhler maximum gives

Ac

rc
= (3BI + 2BJ)

r3
c

(6.8)

with Ac = 2v1γc/kT. The critical surface tension and droplet size are
available from Eq. (6.8). In particular,

r2
c =
(3BI + 2BJ)

Ac
. (6.9)

The minimum surface tension is obtained in the limiting case
that the entire seed is composed of surfactants (i.e., BI = 0). Inserting
(6.5) into (6.8) gives

γSc = −2∑
j
kTΓj(rc)(

∂γ
∂kTΓj

)
r=rc

, (6.10)

where the superscript refers to the surfactant limit. Equation (6.10)
is the obvious extension of (3.12) to multiple surfactant species.
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The prevalence of hyperbolic curves proportional to the Kelvin
curve, either as a locus of Köhler maxima for an internal mixture of
seed particles of fixed composition and variable size or as boundaries
for a 2D locus of Köhler maxima for mixtures having variable com-
position and size, is nicely explained from these results: Rewriting
Eq. (6.4) as

r3
c ln Sc = 2(BI + BJ)

and dividing by Eq. (6.9) gives the general result

rc ln Sc = (
2BI + 2BJ

3BI + 2BJ
)Ac. (6.11)

This reduces in the absence of surfactant (BJ = 0) to

rc ln Sc =
2
3
Ac =

2
3
A0, (6.12)

the universal curve for mixtures containing one or more soluble
inorganic compounds. Because, as demonstrated in Sec. IV for the
ideal and Szyszkowski–Langmuir surfactant models, the surface ten-
sion cannot go below 2γ0/3, Eq. (6.12) gives a lower bound hyperbola
for any mixture described by these models.

In the surfactant limit, Eq. (6.11) reduces to

rc ln Sc = Ac, (6.13)

which is minimized for Ac = AS
c = 2v1γSc/kT for a mixture of sur-

factants using Eq. (6.10). For the complete locus of Köhler maxima,
in the general case that both particle size and composition vary,
Eqs. (6.12) and (6.13) can be combined to obtain

2
3
A0 ≤ rc ln Sc ≤ AS

c . (6.14)

Extension of the κ-Köhler model to include surfactants: In Eq. (6.5),
the assignment

∑
i
xi =

BI

r3
c

(6.15)

was made using BI = κIr3
dry from Eq. (2.11), based on the volume-

additive property of κ,

κI = ∑
i

r3
dry,i

r3
dry

κi ≡ ∑
i
εiκi. (6.16)

Summing over water-soluble species i gives ∑
i
εi = ∑

i
r3
dry,i/r3

dry

= r3
dry,I/r3

dry for the fractional volume of water-soluble species in the
dry seed particle.

To represent surfactants in a similar fashion, a species- and
model-dependent parameter η for the surface-active species is intro-
duced. For species j in the Szyszkowski–Langmuir model,

ηj =
2
3

⎛
⎜
⎝

1

1 − Γj
Γmj

⎞
⎟
⎠
v1

vj
, (6.17)

reducing to

ηj =
2
3
v1

vj
(6.18)

in the ideal case. The additive rule for η is the same as for κ,

ηJ = ∑
j
ηj
r3
dry,j

r3
dry,J
≡ ∑

j
εjηj, (6.19)

and BJ = ηJr3
dry completes the analogy. As the strong-preference

approximation assumes that each species is either water-soluble or
surfactant, we have∑

i
εi +∑

j
εj = 1. As composition is changed, the κ

values remain unchanged, as do the η values in the ideal case, while
the η values in the S–L model need to be recomputed using Eq. (6.4).

Implementation of the η-Köhler extension is illustrated by
showing that the well-known 3/2 power-law scaling between
effective dry particle radius and critical wet radius applies as
well to mixtures that include both water-soluble species and
surfactants,

r2
c =
(3BI + 2BJ)

Ac
= (3κI + 2ηJ)

Ac
r3
dry. (6.20)

Critical droplet concentration, proportional to r3
dry/r3

c , continues to
increase as 1/rc.

Figure 10 shows the locus of Köhler maxima for seed particles
consisting of mixtures of NaCl and octanoic acid of varying size and
composition. This is indicated by the shaded region bounded by the
lower and upper dashed hyperbolic curves for pure NaCl and pure
OA (γSc=57.6), respectively. The dotted curve is the specific locus
for composition 10% NaCl and 90% OA by number (8.2% NaCl
and 91.8% OA by volume). κNaCl = 1.25 is unchanged, while ηOA
depends on composition, with ηOA = 0.17 for the 10–90 mixture.
The red curves (see caption) were obtained with fixed total occupa-
tion number n2 + n3 = 1.6 × 105, corresponding roughly to a 20 nm

FIG. 10. Loci of Köhler maxima for binary seed particles, ∼20 nm in radius,
consisting of mixtures of salt and octanoic acid. Composition ranges from pure
octanoic acid (upper larger markers) to pure salt (lower merged marker). Upper
and lower red curves, Szyszkowski–Langmuir and ideal surfactant models, respec-
tively. Black solid curve, Kelvin relation for pure water. Loci of Köhler maxima for
pure octanoic acid, upper dashed curve; pure salt, lower dashed curve; and a 10%
salt, 90% octanoic acid mixture, dotted curve. Smaller markers, results from the
10% salt mixture calculation according to the two models.
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radius particle for NaCl and a slightly larger one on full replace-
ment of the NaCl ion pairs (component 2) with OA (component 3),
keeping the total occupation number constant. Note the merging
of the curves computed using the Szyszkowski–Langmuir and ideal
models (upper and lower red curves, respectively) as the number
of molecules of surfactant and superficial density are reduced on
replacement with salt. The figure shows that the initial replacement
of OA with even a small amount of salt (0%–10%) results in a sig-
nificant reduction in the Köhler activation threshold, most notably
in the Szyszkowski–Langmuir model. The effect is weaker and in the
opposite direction when it is the salt that is initially replaced. Finally,
the dashed curves, which are identical to those in Figs. 1 and 9, are
seen to bound the locus of Köhler maxima for the mixture [shaded
region consistent with inequalities (6.14)].

VII. CONNECTIONS TO CLASSICAL NUCLEATION
THEORY

The barrierless Köhler activation process differs fundamen-
tally from nucleation, which requires a thermally driven barrier
crossing. During the Köhler process, critical droplets are formed
and transformed spontaneously from infinitesimally sub-critical
droplets to infinitesimally super-critical ones as the threshold level
of water vapor saturation is reached—a barrierless transition. Nev-
ertheless, there are connections between the two processes, as pre-
viously explored in the absence of surfactant effects (Reiss and
Koper, 1995; Mirabel et al., 2000). Here, we focus on the reversible
work of critical droplet formation directly from the vapor, W∗, a
quantity whose derivative with respect to the chemical potential of
species i gives the total number of molecules of species i present
in the droplet independent of surface-bulk partitioning. The work
of critical droplet formation in classical nucleation theory takes the
form

W∗ = −VΔP + 4πr2γ, (7.1)

where V is the droplet volume. Moreover, each of the terms on the
right-hand side is individually related to W∗,

2W∗ = VΔP,

3W∗ = 4πr2γ.
(7.2)

These relations, also found in Gibbs (1878) (p. 421 of the cited
reference), have recently been extended for applications to hetero-
geneous as well as homogeneous and molecular-based nucleation
processes (McGraw et al., 2018). From a cloud physics perspective,
W∗ would seem to have little bearing on the Köhler problem as crit-
ical droplet assembly directly from water vapor and particle seed
is not taking place. Nevertheless, W∗ retains the theoretical value;
it is an especially convenient thermodynamic potential for making
sense of the intertwined relationships existing between changes in
surface and volume work, between droplet size and seed composi-
tion, and between surface tension and Laplace pressure at a Köhler
maximum.

Inverting Eq. (3.8) yields an expression for dr/dμ2,

dr
dμ2
= −(3n

b
2 + 2ns2)
8πrγ

. (7.3)

This is simpler than the reciprocal of (3.9) would imply, but (3.8) is
valid only at a Köhler maximum, whereas (3.9) holds for any radius.
Converting Eq. (7.3) from the droplet radius to surface area (or vol-
ume) results in derivatives of droplet surface area (or volume) with
respect to chemical potential,

γ
d(4πr2)
dμ2

= ΔP dV
dμ2
= −(3nb2 + 2ns2). (7.4)

Combining Eq. (7.4) with (3.3) and (3.4) gives the change in surface
(or volume) work with respect to the change in chemical potential,

d(4πr2γ)
dμ2

= γd(4πr
2)

dμ2
+4πr2 dγ

dμ2
= −(3nb2 +2ns2)−ns2 = −3n2, (7.5)

d(VΔP)
dμ2

= ΔP dV
dμ2

+ V
dΔP
dμ2
= −(3nb2 + 2ns2) + nb2 = −2n2. (7.6)

Comparing Eqs. (7.5) and (7.6) with the corresponding Gibbs iden-
tities for reversible work from Eqs. (7.1) and (7.2) gives in either
case

dW∗

dμ2
= −n2. (7.7)

This equation holds for each species present in the droplet (includ-
ing water). Derivatives are taken holding the chemical potentials
of the other species present constant. These “nucleation theorems”
give the molecular content of a multicomponent critical nucleus
in terms of its reversible work of formation from vapor (Oxtoby
and Kashchiev, 1994). Here, we have shown that the theorems
apply as well to the incipient multicomponent droplets at the vapor
saturation threshold for cloud drop formation.

Figure 11 shows an application of the results of this section to
another determination of conditions at a Köhler maximum. This
method depends only on the total number of molecules present
in the droplet, irrespective of their partitioning. The figure shows
reduced surface work as a function of reduced chemical potential.
Similar curves for the volume work or total work, W∗, would lie at

FIG. 11. Tangent construction for the Köhler maximum for a case of general parti-
tioning. Reduced surface work of droplet formation vs reduced chemical potential
for butanol at equivalent dry diameter rdry = 20 nm (solid curve). The critical slope
is −3n2 from Eq. (7.5), multiplied here by 2.303 for the use of the common log. The
marker indicates the unique set of coordinates present at the Köhler maximum.
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2/3 height and 1/3 height, respectively, of the surface work curve.
The tangent slope of the surface work curve at the Köhler maximum
is −3n2 (before correcting for use of the common log) in agreement
with Eq. (7.5). Correspondingly reduced, the critical slope for the
volume work (if shown) would be −2n2, and for W∗, it would be
−n2 in agreement with Eqs. (7.6) and (7.7).

VIII. DISCUSSION AND SUMMARY
An early droplet stability model of Gibbs (Gibbs, 1878) has

been developed and used to systematically reformulate the Köh-
ler theory of cloud droplet activation in a way that seamlessly
includes water-soluble species and surfactants. The model relies on
only the most fundamental principles of chemical thermodynamics,
specifically the Gibbs adsorption equation (3.3), its pressure ana-
log (3.4), and conservation of solute species. Even the background
phase surrounding the aqueous solution droplet is unspecified—
it could be vapor or even ice. There is no restriction placed on
the activity of the solute, either within the drop or at its surface,
other than the requirement that it has the same value in equi-
librium. Gibbs assumed a solute activity proportional to concen-
tration, but this assumption is not required by the model. The
only requirement is that the critical droplet radius be large rela-
tive to interfacial thickness, as discussed by Gibbs himself and noted
in Sec. IV.

The last requirement is well satisfied for typical cloud envi-
ronments where supersaturations are low, usually less than 1 or
at most a few percent. Under these conditions, the nascent crit-
ical droplets are sufficiently large that any intrinsic dependence
of surface tension on the droplet curvature can be neglected,
while the compositional dependence of the surface tension through
changes in droplet surface-to-volume ratio and solute partitioning is
retained. This last point implies that interfacial models developed
to treat flat surfaces (e.g., Dutcher and Wexler, 2013; Wang and
Wexler, 2013) remain applicable to the critical droplets at a Köhler
maximum.

In its application to Köhler theory, the stability analysis of
Gibbs provides a systematic framework that places the treatment
of surfactant and solution effects on a more or less equal foot-
ing. The new framework inherits the symmetry manifested between
(3.14) and (3.12), which constrain how critical supersaturation and
solute concentration, and surface tension and superficial density,
respectively, vary along loci of Köhler maxima. These two funda-
mental inequalities serve as the basis for our reformulation of Köhler
theory.

A key finding of the present study is that the ability of surfac-
tants to lower surface tension at a Köhler maximum is surprisingly
limited: for the models tested (Szyszkowski–Langmuir and ideal),
the lowering relative to pure water is at most 1/3, and that limit is
achieved only in the ideal model. The graphical construction of Fig. 2
provides a simple proof of this result for any convex or linear adsorp-
tion isotherm. Different models of surface tension and adsorption
may lead to different results regarding weakening of the surfactant
effect. The extent to which this occurs is an open question. The fun-
damental methods of Sec. III can provide a detailed case-by-case
analysis, as described for the two models considered in Sec. IV B,
and may well lead to more general avenues for development in future
research.

Increases in critical droplet radius as well as lowering of sur-
face tension reduce the critical saturation threshold required for
activation. The analysis of Sec. IV, extended in Sec. VI to mix-
tures, accounts quantitatively for both effects. The critical wet radius
was found to have the same scaling for mixtures of water-soluble
and surface-active species, proportional to the 3/2 power of the
equivalent dry seed radius, as previously obtained for the bulk limit
(Petters and Kreidenweis, 2007; Lewis, 2008). Loci of Köhler max-
ima were obtained, ranging from individual hyperbolic curves for
mixtures of seeds at fixed composition and variable size to bounded,
two-dimensional, regions for mixtures of variable composition and
size [inequalities (6.14)]. These loci were found to constrain the
location of Köhler maxima in a predictable way that should make
comparisons between the new theory, CCN measurements, and
atmospheric models both more quantitative and easier to imple-
ment than was previously possible using the traditional Köhler
framework.
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